Ученые Центра компетенций Национальной технологической инициативы «Водород как основа низкоуглеродной экономики» на базе ФИЦ «Институт катализа СО РАН» повысили стабильность материала для электродов в щелочных водородных топливных элементах. Они получили материал, содержащий никель и фосфор, который не боится глубокого окисления. В перспективе такая разработка может повысить мощность топливных элементов.
Водородный топливный элемент состоит из набора электрохимических ячеек, в каждой из которых есть пара электродов (катод и анод), содержащих катализаторы и разделенных тонкой мембраной. В щелочном топливном элементе на катод подают газообразный кислород, который в ходе электрохимического восстановления в присутствии воды превращается в гидроксид-ионы. Они проходят через мембрану к аноду, где взаимодействуют с газообразным водородом. В результате по цепи между анодом и катодом движутся электроны, создавая ток, а при взаимодействии гидроксид-ионов и водорода образуется чистая вода.
В производстве щелочных топливных элементов есть проблема — необратимое окисление электродов. Чтобы удешевить их, производители отказываются от платиновых катализаторов и используют никелевые. Они легко окисляются на воздухе и теряют способность активно превращать водород в воду и электричество. Такие топливные элементы работают не на полную мощность.
В Водородном центре компетенций НТИ создают и исследуют различные каталитические материалы для водородной энергетики. Так, ученые создали никель-фосфорный материал методом электроосаждения, который исследовали в реакции окисления водорода в модельной низкотемпературной ячейке. Модельная система позволяет изучать конкретное, отдельное явление, отсекая лишние процессы, которые присутствуют в ячейке реального топливного элемента.
«Никель-фосфорные системы в основном исследовались для электролизеров, как катализаторы, на которых выделяется водород в ходе разложения воды. В окислении водорода такие системы изучены слабо. Никелевые катализаторы легко окисляются на воздухе или даже в самих топливных элементах при определенных условиях. Мы обнаружили, что никель-фосфорный образец в электрохимической ячейке легко может восстанавливаться практически до исходного состояния после глубокого окисления. Чисто никелевый материал окисляется необратимо. Мы заинтересовались этим эффектом и после детальных исследований выяснили, что на поверхности полученного никель-фосфорного катализатора быстро образуется фосфатная «шуба» — оболочка, которая практически моментально защищает и сохраняет свойства исходного материала. После окисления мы можем легко вернуть систему в исходное состояние, и она снова будет работать эффективно», — рассказывает ведущий автор исследования, младший научный сотрудник ЦК НТИ «Водород как основа низкоуглеродной экономики» и Института катализа СО РАН Алексей Кузнецов.
По словам ученого, процесс восстановления никель-фосфорного катализатора можно сравнить с окислением алюминия. В чистом виде алюминий бурно реагирует с кислородом или водой. Но на его поверхности легко и быстро образуется тонкая пленка оксида, которая хорошо его защищает, благодаря чему металл можно безопасно использовать.
В планах ученых — повысить активность синтезированного материала в окислении водорода до более высокого уровня, чтобы он получил развитие в приложении к реальным топливным элементам, при этом сохранив свои свойства. Возможно, обнаруженный эффект найдет применение и в других областях, например, для повышения коррозионной устойчивости материалов, используемых в агрессивных средах.
Алексей Кузнецов отмечает, что эта работа — небольшая часть из того, чем занимается научно-трудовой коллектив фото- и электрокатализа ИК СО РАН и ЦК НТИ. Ученые исследуют разные методы создания электродов и электродных каталитических материалов, изучают комплексные процессы, протекающие в электрокаталитических системах.
Об исследователе: «Химией я заинтересовался в школе ещё до того, как она началась у нас по программе, она всегда меня увлекала. Дома у меня была маленькая химическая лаборатория. Уже тогда я собирал электролизеры из подручных материалов и под действием электрического тока изучал разложение водных растворов — получал водород, кислород и другие химические соединения», — говорит Алексей Кузнецов. Он окончил факультет естественных наук Новосибирского государственного университета, где преподает сейчас на кафедре аналитической химии. В Институте катализа СО РАН работает с 2005 года, практически с момента открытия группы электрокатализа.