Исследователи из Центра компетенций НТИ «Водород как основа низкоуглеродной экономики» на базе ФИЦ «Институт катализа СО РАН» и Университета ИТМО использовали машинное обучение, чтобы оптимизировать параметры катализаторов для интенсификации производства чистого водорода и прогнозировать эффективность фотокатализа.
«Модель помогает сократить время на этапе синтеза, предлагая наиболее оптимальные параметры с наибольшим выходом водорода. Благодаря использованию алгоритмов машинного обучения и анализа данных, она сама может предсказывать, какие условия синтеза приведут к наилучшим результатам. Это минимизирует количество экспериментов и сокращает время на поиск эффективных методик. Также использование модели улучшает точность получаемых данных — она основывается на ранее собранных данных и научных принципах, что позволяет избежать случайных ошибок и повысить воспроизводимость результатов», — рассказывает младший научный сотрудник НОЦ инфохимии ИТМО Вероника Юрова.
«Над базой мы работали несколько лет. Первоначально синтезировали g-C3N4 разными способами, начиная от традиционных подходов, заканчивая более сложными методиками синтеза. Использование модели на основе искусственного интеллекта позволяет выявлять закономерности между физико-химическими характеристиками g-C3N4, параметрами его синтеза, а также каталитической активностью, благодаря чему исследователи могут быстро и эффективно подбирать оптимальные условия синтеза и оценивать его фотокаталитическую активность в реакции выделения водорода», — добавляет младший научный сотрудник отдела гетерогенного катализа ИК СО РАН Ксения Потапенко.